Embedded antichains in tournaments

نویسندگان

  • Stephen J. Greenfield
  • Brenda J. Latka
چکیده

The maximum antichain cardinality (MACC) of a tournament is the maximum number of incomparable subtournaments of T . We establish some properties of MACC. We describe all tournaments whose MACC is 1 or 2, show that MACC can grow exponentially with the size of the vertex set of a tournament, and present some questions for further investigation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Classification of Antichains of Finite Tournaments

Tournament embedding is an order relation on the class of finite tournaments. An antichain is a set of finite tournaments that are pairwise incomparable in this ordering. We say an antichain A can be extended to an antichain B if A ⊆ B. Those finite antichains that can not be extended to antichains of arbitrarily large finite cardinality are exactly those that contain a member of each of four f...

متن کامل

t-Pancyclic Arcs in Tournaments

Let $T$ be a non-trivial tournament. An arc is emph{$t$-pancyclic} in $T$, if it is contained in a cycle of length $ell$ for every $tleq ell leq |V(T)|$. Let $p^t(T)$ denote the number of $t$-pancyclic arcs in $T$ and $h^t(T)$ the maximum number of $t$-pancyclic arcs contained in the same Hamiltonian cycle of $T$. Moon ({em J. Combin. Inform. System Sci.}, {bf 19} (1994), 207-214) showed that $...

متن کامل

Computing Weakest Strategies for Safety Games of Imperfect Information

CEDAR (Counter Example Driven Antichain Refinement) is a new symbolic algorithm for computing weakest strategies for safety games of imperfect information. The algorithm computes a fixed point over the lattice of contravariant antichains. Here contravariant antichains are antichains over pairs consisting of an information set and an allow set representing the associated move. We demonstrate how...

متن کامل

# a 29 Integers 9 ( 2009 ) , 353 - 374 Combinatorial Properties of the Antichains Of

In this paper we study some combinatorial properties of the antichains of a garland, or double fence. Specifically, we encode the order ideals and the antichains in terms of words of a regular language, we obtain several enumerative properties (such as generating series, recurrences and explicit formulae), we consider some statistics leading to Riordan matrices, we study the relations between t...

متن کامل

On canonical antichains

An antichain A of a well-founded quasi-order (E,≤) is canonical if for every finite subset A0 of A, all antichains of E\{x : x ≥ a for some a in A\A0} are finite. In this paper, we characterize those quasi-orders that have a canonical antichain. Guoli Ding, On canonical antichains, (July 20, 1994) 1

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2002